Pablo Montalvo‑Leroux · ML Engineer @ Hugging Face
The journey began with uncertainty: back in 2016, machine learning was far from standardized. Tools like Theano and CNTK were fading, and many of us—myself included—were jumping framework to framework. It was a time of raw experimentation.
But reproducing results remained frustratingly difficult.
That all changed with pytorch-pretrained-bert
, the predecessor to Transformers. Suddenly, the magic of BERT was available in an interface that made sense.
🧩 Simpler Interface
No static graphs, just Python functions and PyTorch modules.
✨ Hackability
Readable, hackable code meant results could be shared, reproduced, improved.
🚀 Community Shift
This shifted the research community towards PyTorch.
Static graphs require you to compile, wait, and cross fingers the bug reproduces.
Dynamic graphs mean you can drop pdb.set_trace()
anywhere and continue iterating.
Nowadays torch.compile
gives the best of both worlds: write dynamically, ship something ahead‑of‑time optimised.
PyTorch lowered the barrier to implementation — Transformers built on top of that simplicity.
🔍 Live Debugging
2018: BERT fine-tunes meant print(tensor)
, not recompile & hope.
🤝 Fast Review
Patches were understandable and reproducible — merged quickly, verified quickly.
⚡ Fast Iteration
Experiments shifted from weeks to hours — feedback cycles accelerated.
# modeling_bert.py — single source of truth
class BertConfig(PretrainedConfig):
...
class BertSelfAttention(nn.Module):
...
class BertLayer(nn.Module):
...
class BertModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = nn.ModuleList(
[BertLayer(config) for _ in range(config.num_hidden_layers)]
)
self.init_weights()
from_pretrained()
logic live together.Transformers makes modeling easy. vLLM makes inference fast.
🔧 Prototype with Transformers:
from transformers import pipeline
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
print(pipe("The future of AI is")[0]["generated_text"])
vLLM supports transformers
models out of the box. Just specify model_impl="transformers"
if needed:
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
params = SamplingParams(max_tokens=20)
outputs = llm.generate("The future of AI is", sampling_params=params)
print(outputs[0].outputs[0].text)
We also support SGLang now, along with thousands of other libraries!
📈 Community Growth
The scientific and engineering ML community thrived with Transformers.
🔥 PyTorch Synergy
Transformers and PyTorch grew together — adoption fed back into both ecosystems.
🛠️ Maintenance Pressure
We duplicate code on purpose — to preserve clarity, portability, and hackability.
🧬 Pythonic Modularity
The Modularity of python is never far :)
Compose new blocks via subclass & override.
class GlmMLP(Phi3MLP):
pass
class GlmAttention(LlamaAttention):
def __init__(self, config, layer_idx=None):
super().__init__(config, layer_idx)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
config.hidden_size, bias=False)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
# Slightly different RoPE
…
class GlmForCausalLM(LlamaForCausalLM):
pass
AST expands → full modeling file, still hackable.
All the code becomes runnable and a self-contained model definition
class GlmMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class GlmAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
@use_kernel_forward_from_hub("RMSNorm")
class GlmRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
GlmRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class GlmRotaryEmbedding(nn.Module):
def __init__(self, config: GlmConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
We keep hackability while reconnecting with Python working paradigms.
nn.Module
; dump logits layer‑by‑layerBefore, changing to Tensor Parallel meant changing the code.
from transformers.modeling_utils import PreTrainedModel
from megatron.model import ColumnParallelLinear, RowParallelLinear
class MyTPModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.q_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.k_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.v_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
self.o_proj = RowParallelLinear(config.hidden_size, config.hidden_size)
The tp_plan
JSON keeps model code pristine and declarative.
{
"layer.*.self_attn.q_proj": "colwise",
"layer.*.self_attn.k_proj": "colwise",
"layer.*.self_attn.v_proj": "colwise",
"layer.*.self_attn.o_proj": "rowwise"
}
Translated to
def translate_to_torch_parallel_style(style: str):
if style == "colwise":
return ColwiseParallel()
elif style == "rowwise":
return RowwiseParallel()
# …
One JSON → 100 B param model on 8 GPUs. Change the plan, not the code.
0‑copy weight sharding, single cuda Malloc
Faster model loads, even for a 50-shards 100B model (when we were sprinting Llama4!)
All of these can be mitigated: Triton, compiled custom ops, compile‑time fallback, custom kernels
Kernel Hub lets any Python program download and hot‑load compiled CUDA/C++ kernels directly from the Hugging Face Hub at runtime.
PYTHONPATH
.
import torch
from kernels import get_kernel
# Download optimised kernels from the Hugging Face Hub
activation = get_kernel("kernels-community/activation")
x = torch.randn(10, 10, dtype=torch.float16, device="cuda")
y = torch.empty_like(x)
activation.gelu_fast(y, x)
print(y)
Same Transformer code — now with a 3× faster GELU on A100s.
🔍 Make Easy Things Obvious
Models load in one line
— no boilerplate.
model = AutoModel.from_pretrained("bert-base-uncased")
📄 Paper-to-Repo Diff ≈ 0
Code reflects architecture directly.
class LlamaAttention(nn.Module): ...
🚀 Prototyping → Production
Same model runs in vLLM for deployment:
LLM(model="llama", model_impl="transformers")
🎛️ Hide Sharding, Show Intent
Declarative TP via config:
"q_proj": "colwise"
We tune radios without building RF amps. ML should feel the same.
…while empowering those who do build the amps.
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-8B")
model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
Same API across text · vision · audio
More and more models, with specific processing - need to uniformize
Torch and torchvision ops have replaced np + PIL defaults in transformers
🤝 Symbiotic Growth
PyTorch &
transformers
grow together
🧠 Pythonicity × Pragmatism
High-level code, low-level control — a winning combination for fast iteration.
🚢 Models Ship Faster
Open-source models are scaling up — and landing in users' hands faster than ever.
📚 Source of Truth for Model Definitions
We aim to be the canonical reference — while enabling the community to build, remix, and deploy at scale.